

Hilton Imperial Dubrovnik, 22-24 April 2024 Secondary raw material sources, supply, processing, and markets

Recent Activities of Spent Refractory Recycling of SHINAGAWA Refractories in Collaboration with JFE Steel

Masakazu Iida

Apr. 24th, 2024

SHINAGAWA REFRACTORIES CO., LTD.

SKY IS THE LIMIT : SHAPING THE FUTURE OF REFRACTORIES

1

Pursuing the Circular Economy

SHINAGAWA Refractories is pursuing the circular economy by promoting recycling.

SHINAGAWA REFRACTORIES CO., LTD.

Partnership with JFE Steel

SHINAGAWA Refractories is responsible for refractory construction, maintenance and management in three major integrated steel mills of JFE steel.

Creating Closed Recycle System with JFE Steel

The steel is being promoted strategically.

- We hot metal ladle
 Managed dismantling & Quality control based on chemical analysis
 Tundish
 Color sorting for crushed grain of monolithic refractories
- Sliding gate plate Reuse by partial replacement

We have a straig to the straig term of term of the straig term of t

Deposit

There are several materials to be demolished
 Wear and safety linings are targeted for recycling

Component	Material		
Deposit	Skull, Slag	Freeboard	
Lip ring	Alumina based monolithics		Wear lining
Mouth	Alumina based monolithics		
Freeboard	Alumina based brick	Safety lining	
Wear lining	Al ₂ O ₃ -Pyrophyllite-SiC-C brick		
Safety lining	Pyrophyllite brick		
			2 Hoats/day

Target of Recycling

2 Heats/day 400 Heats/service life

Mouth and Lip ring

Result of the First Trial

Recycled material-including brick was produced through simple process.
 Impurities were contaminated and promoted matrix melting.

Brick Preparation

- Excessive amounts of impurities deteriorates corrosion resistance of brick.
- Less than 2.5 mass% of CaO+MgO in recycled material is necessary to ensure the equivalent performance if the brick includes 70 mass% of recycled material.

Fig. Relationship of impurity content and erosion resistance (70 % recycled raw material content)

Route of Contamination and Countermeasures

 \bigotimes It was assumed that impurities were contaminated during dismantling process.

Oismantling process management was intensified.

2-Step Dismantling & Sieving

♦ 2-Step dismantling & sieving are implementable.

Component Material		Steps			
Deposit	Skull, Slag				
Lip ring	Alumina based monolithics	1. Waste			
Mouth	Alumina based monolithics	demolishing			
Freeboard	Alumina based brick				
Discharging demolished waste					
Wear lining	Al ₂ O ₃ -Pyrophyllite-SiC-C brick	2. Demolishing			
Safety lining Pyrophyllite brick for recov		for recover			

Sieving to reject fine powder which includes contaminants

Modification was necessary to maintain equivalent performance.

	Conventional	Recycled material-containing
Chemistry / mass% Al ₂ O ₃ SiO ₂ SiC C	64 16 5 10	55 25 7 10
AP / % BD / kg • m ⁻³ CCS / MPa	5.0 292 0 53	6.5 2800 56

Recycling Process Ensuring Performance Stability

Recipe adjustment according to the chemical analysis is being implemented to secure the performance stability.

SHINAGAWA REFRACTORIES CO., LTD.

We have a state of the state of

Altered Layer Removal of Monolithic Tundish

SHINAGAWA

Tundish wear lining refractories includes colored altered layer.

◊◊ It is difficult to remove the altered layer by manual chipping if the monolithic is installed.

♦ Sorting after crushing was assumed to be convenient.

Color Sorting

Color sorting technologies for particle had been already available.
Operating parameters were specified for tundish refractory sorting.

Applicable Size: 10 - 30 mmCapability: 1.5 ton/hourRegular application has just begun

<u> クボタ色彩選別機 選別王シリーズ - YouTube</u>

From industrial point of view, maintaining sufficient yield rate is necessary.
Maintaining 60 % of yield rate, a slight decrease in purity is recognized.

Yield rate: Approximately 60%Further purification: Reducing yield rate

Castable Properties

◊ Castable containing recycled material (more than 20%) showed acceptable properties.

Recycling process

♦ Reduction in landfilling amount is expected for JFE steel.

We have the set of t

Sliding gate plate

Reuse by partial replacement

Sliding gate regulates steel flow rate for proper casting.

Typical Properties				
Chemistry / mass% Al_2O_3 SiO_2 ZrO_2 C	84 1 5 6			
AP / %	4.3			
BD / kg·m ⁻³	3320			
CCS / MPa	230			

SHINAGAWA REFRACTORIES CO., LTD.

Only the area around bore suffers sever damages.Multiple use of rest of the part was attempted.

Surface damaged area is replaced.Main body is used for multiple time.

Commercial Application

Equivalent damage rates were observed for multiple use.

♦ By using 3 times, 48 % reduction in refractory waste is expected.

- 1. Getting a used plate Surface damage
- 2. Core brick removal

3. Core brick installation

4. Sliding surface grinding

5. Thickness recovering

- We hot metal ladle
 Managed dismantling & Quality control based on chemical analysis
 Tundish
 Color sorting for crushed grain of monolithic refractories
- Sliding gate plate Reuse by partial replacement

- SHINAGAWA refractories and JFE steel are promoting spent refractory recycling strategically with close partnership.
- Recycling activities of three items, i.e., hot metal ladle, tundish and sliding gate plate, were exemplified.
- Concerning the hot metal ladle, strictly managed dismantling & chemical analysis-based quality control achieve the stable operation of recycled material-containing brick.
- Solution of color solution
- With respect to the sliding gate plate, partial replacement of critical zone allows multiple use of main body.

Thank you!

SKY IS THE LIMIT : SHAPING THE FUTURE OF REFRACTORIES

